Exercice 1 (7.1.6, modifié)

Soit la réaction hétérogène à l'équilibre

$$CaCO_3(s)$$
 \leftarrow $CaO(s) + CO_2(g)$

A 800°C, la pression de CO_2 dans un réacteur fermé est de 0,22 bar. Calculer la constante d'équilibre K à cette température. (La pression de référence $P^0 = 1$ bar)

Exercice 2 (7.2.5-modifié)

On enferme 0,2 g de CO₂ dans un récipient d'un litre, initialement vide, maintenu à 2500 K. Le CO₂ se dissocie selon la réaction

$$2CO_2(g)$$
 \rightleftharpoons $2CO(g) + $O_2(g)$$

Calculer la constante d'équilibre K à cette température, sachant que la pression totale dans le récipient, mesurée à l'équilibre est 1bar. La pression de référence $P^0=1$ bar.

Exercice 3 (7.2.7 modifié)

Dans un récipient fermé de 5 L, on mélange 12 g de SO₃, 5 g de O₂ et 8 g de SO₂ à 700°C

$$2 SO_2(g) + O_2(g) \implies 2 SO_3(g)$$

Si la constante d'équilibre K de la réaction vaut 3.46 à la température d'expérience. ($P^0 = 1$ bar)

- a) Le système est-il à l'équilibre ? Sinon, dans quel sens la réaction évolue-t-elle ?
- b) Une fois l'équilibre atteint, dans quel sens la réaction aura-t-elle tendance à évoluer si
 - on chauffait le système en sachant que la réaction est exothermique
 - on augmentait la pression du système (par diminution du volume)
 - on augmentait la quantité de SO₂

Exercice 4 (7.2.8, modifié)

La constante d'équilibre de la réaction

$$CO(g) + H_2O(g) CO_2(g) + H_2(g)$$

à 986 °C est de 0,63. Un mélange de 1 mole de vapeur d'eau et de 3 moles de CO atteint son équilibre sous une pression totale de 2 bar. (La pression de référence $P^0 = 1$ bar)

- a) Combien y-a-t-il de moles de H₂ à l'équilibre?
- b) Quelle est la pression partielle de chacun des gaz dans le mélange à l'équilibre?

Exercice 5 (8.1.10)

Soit la réaction de décomposition dans un milieu réactionnel fermé:

- a) Calculer $\Delta_r H^0$, $\Delta_r S^0$ et $\Delta_r G^0$ de cette réaction à 25°C.
- b) Si la réaction n'est pas spontanée dans ces conditions, estimer la température à laquelle elle le devient.
- c) Quelle est l'expression de K?
- d) Quel effet aura l'ajout de NaHCO3 solide si le réacteur est fermé ou s'il est ouvert ?

Données (à 25°C)

	$\Delta_f H^0$ [kJ mol ⁻¹]	$S^{O}\left[J\;K^{1}\;mol^{1}\right]$
NaHCO ₃ (s)	- 950,8	101,7
Na ₂ CO ₃ (s)	- 1130,7	138,8
CO ₂ (g)	- 393,5	213,7
H ₂ O (g)	- 241,8	188,8

Exercice 6 (8.2.9, modifié)

La réaction de vaporisation du brome est la suivante :

$$Br_{2}(\ell) \iff Br_{2}(g)$$

- a) Est-elle spontanée aux conditions standard à 25°C?
- b) Calculer la pression de vapeur du brome à 25° C ($P^{\circ} = 1$ bar).
- c) Comment varie qualitativement l'entropie du système pendant la vaporisation ?

Donnée : $\Delta_f G^O(Br_2(g)) = 3,1 \text{ kJ mol}^{-1}$

Exercice 7

c) la réaction est spontanée à haute température d) la réaction est spontanée à basse température

On enferme un échantillon de phosgène $COCl_2$ (g) dans un récipient (volume cons 395 K et on mesure une pression initiale (avant équilibre) de 0.35 bar. Calculer les pressions partielles de chaque gaz (Cl_2 , CO , $COCl_2$) ainsi que la pression totale du à l'équilibre ($T = 395$ K)	S
Données : $CO(g) + Cl_2(g) \longrightarrow COCl_2(g)$ $K = 0.22$, pression de référence $P^0 = 1$ ba Considérer que les valeurs numériques des activités sont égales à celles des pressipartielles.	
Exercice 8	
Indiquer quelle(s) est (sont) le(s) affirmation(s) correcte(s)	
a) Si une réaction est spontanée, lnK est nécessairement plus petit que 1 b) Si la constante d'équilibre K est plus petite que 1 , $\Delta_r G^0$ est négatif c) Au début d'une réaction, si le quotient réactionnel Q est plus petit que la constante d'équilibre K, la réaction se déroulera de gauche à droite d) A l'équilibre, $\Delta_r G^0 = 0$	
Exercice 9	
Soit la réaction suivante	
$H_2O(g) + \frac{1}{2} O_2(g) \iff H_2O_2(g)$	
Donnée : la constante d'équilibre augmente avec la température.	
Indiquer quelle(s) est (sont) le(s) affirmation(s) correcte(s) pour la réaction directe (d à droite) aux conditions standard:	le gauche
 a) l'entropie de réaction diminue b) la réaction est endothermique c) la réaction est spontanée à haute température 	